SHAHD MATANGINI HAZRA GOVT. COLLEGE FOR WOMEN

Prepared Basudev Mandal Asst. Professor Department of Chemistry Subject : Inorganic Chemistry Unit : Chemical periodicity Semester: II Session : 2022-2023

PERIODIC TABLE OF ELEMENTS

1 H Hystragan					1	Ato	mic Nur	nber									He
3 Li	Be			н	Hydrogen		Symbol						7 N	8 0	° F	10 Ne	
Na	Mg			N	onmetal	Che	mical Gro	up Block				13 AI	Si	15 P	16 S		18 Ar
19 K	Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	Fe Fe	27 Co 5444	28 Ni Materi	29 Cu Dager	30 Zn	Ga	Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr Binners	39 Y	Žr	Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd Matadaan	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53	54 Xe
55 Cs	Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	Ra	-	104 Rf	105 Db	106 Sg	107 Bh	108 Hs Manual	109 Mt	110 DS Derestantion	Rg	112 Cn	113 Nh	114 FI	115 MC	116 LV	117 TS	118 Og
			57 La	58 Ce ortes	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		-	89 Ac	90 Th	91 Pa	92 U Uranium Armini	93 Np Negaritar	94 Pu Putantian Armini	95 Am American American	96 Cm Curium	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr Lavrendum

- Seeing chemical elements arranged in the modern periodic table is as familiar as seeing a map of the world, but it was not always so obvious.
- The creator of the periodic table, Mendeleev, in 1869 began collecting and sorting known properties of elements, like he was playing a game, while traveling by train. He noticed that there were groups of elements that exhibited similar properties, but he also noticed that there were plenty of exceptions to the emerging patterns.

• Dobereiner's law of triads:

- **Dobereiner's law of triads** stated by **Dobereiner** in 1817 is as follows "the atomic mass of the middle element of a **triad** is the arithmetic mean of the atomic masses of the other two elements".
- Examples: such **triads are** lithium-sodiumpotassium, chlorine-bromine-iodine, calciumstrontium-barium, and sulfur-selenium-tellurium etc.

• Newland's law of octaves:

- Newland's law of octaves stated by Newland's in 1864 is as follows if the chemical elements are arranged according to increasing atomic weight, those with similar physical and chemical properties occur after each interval of seven elements.
- Examples: H to F & F to Cl are octaves of eight elements, the eighth element repeating the properties of the first.

• Mendeleev's periodic law:

- Mendeleev's periodic law stated by Mendeleev in 1869 is as follows "The physical and chemical properties of all the elements are a periodic function of their atomic masses"
- Demerits of Mendeleev's Periodic Table:
- **Mendeleev** placed many elements in wrong order of their increasing atomic masses in order to place elements having similar properties in similar group.
- Example: The atomic mass of nickel is less than that of cobalt; in spite of that cobalt is placed before nickel.

• Modern Periodic Law:

- The modern periodic law stated by Henry Moseley in 1912 is as follows
- "The physical and chemical properties of elements are periodic functions of their atomic numbers"
- This means that there occurs a periodic recurrence in physical and chemical properties of elements when they are arranged on the basis of their increasing atomic numbers

EFFECTIVE NUCLEAR CHARGE

• Effective Nuclear Charge:

The **effective nuclear charge** (often symbolized as Z_{eff}) is the net positive charge experienced by an electron in a poly electronic atom. The term "effective" is used because the shielding effect of negetively charged electrons prevents higher orbital electrons from experiencing the full nuclear charge of the nucleous due to the repelling effect of inner-layer-electrons.

• Principle of Slater's Rules :

The general principle behind Slater's Rule is that the actual charge felt by an electron is equal to what you would expect the charge to be from a certain number of protons, but minus a certain amount of charge from other electrons.

• Slater's rules allow you to estimate the effective nuclear charge Zeff from the real number of protons in the nucleus and the effective shielding of electrons in each orbital shell

STEPS OF SLATER'S RULES

• Slater's Rules :

- **Step 1**: Write the electron configuration of the atom in the following form:
- (1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) . . .
- **Step 2**: Identify the electron of interest, and ignore all electrons in higher groups (to the right in the list from Step 1). These do not shield electrons in lower groups
- **Step 3**: Slater's Rules is now broken into two cases:
 - the shielding experienced by an s- or p- electron,
 - electrons within same group shield **0.35**, except the 1s which shield **0.30**
 - electrons within the n-1 group shield **o.85**
 - electrons within the n-2 or lower groups shield 1.00
 - the shielding experienced by nd or nf valence electrons
 - electrons within same group shield 0.35
 - electrons within the lower groups shield 1.00

SHELDING EFFECT AND PENETRATION

• Shielding And Penetration:

- Electrons are negatively charged and are pretty close to each other, which means that they can repel each other. The repulsion an electron feels is **shielding** and the attraction it feels to the nucleus is **penetration**.
- Shielding Effect: If an electron is far from the nucleus, then at any given moment, many of the other electrons present *between* that electron and the nucleus decreases the attractive interaction between it and the electron farther away. As a result, the electron farther away experiences an effective nuclear charge (Zeff) that is less than the actual nuclear charge Z. This effect is called electron shielding.

